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Trichromatic sorting of in vitro 
regenerated plants of gladiolus  
using adaptive resonance theory 
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A machine vision system is described to sort the rege-
nerated plants of gladiolus into groups using trichro-
matic features of leaves. The machine vision system 
consisted of a scanner, image analysis software and an 
adaptive resonance theory neural network. Leaf attri-
butes extracted from the image histograms and used 
for network classification are the mean brightness, 
grey-scale level and the maximum pixel count. The 
system was able to sort the regenerated plants into two 
distinct groups based on the photometric behaviour. 
Vigilance parameter had a significant effect on group-
ing. The approach may provide a means of selecting 
plants suitable for ex vitro transfer and also helps in 
quality control of commercial micropropagation. 

THE primary goal of commercial micropropagation is to 
achieve a large number of genetically identical, physio-
logically uniform and developmentally normal plants with 
the ability to survive upon transfer to ex vitro conditions 
in a relatively short period of time. However, one of the 
major problems in commercialization of the micropropa-
gation technique is the poor survival of regenerated plants 
upon ex vitro transfer. The intrinsic quality of the regene-
rated plants is largely responsible for its survival during 
the period of acclimatization. Various approaches such as 
photoautotrophic micropropagation1, use of raft and immer-
sion culture with or without growth retardants2–4 and mach-
ine vision system have been adopted to reduce the costs 
and improve plant survival. 
 In plant tissue culture system, machine vision has found 
applications in growth determination of suspension cultu-
res5 and regenerated whole plants6, somatic embryo 
sorting7, automatic shoot separation8 and selection of em-
bryogenic cultures9. The purpose of this work is to test 
the hypothesis whether regenerated plants can be sorted 
out into groups based on their photometric behaviour using 
image analysis system coupled with neural network algo-
rithm. It is well understood that the successful clustering 
of regenerated plants gives an opportunity to identify and 
select plants amenable for ex vitro survival. 
 In the present communication, we describe a method to 
project the trichromatic variations of regenerated plants 
and sort them out into groups using adaptive resonance 
theory (ART2). ART2 is a neural network algorithm deri-
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ved from adaptive resonance theory10. It is a clustering 
algorithm which clusters a given set of input patterns into 
some groups in an unsupervised manner. 
 Sprouted shoots of Gladiolus hybridus Hort. cv. Wedd-
ing Bouquet were surface sterilized with 5% sodium hypo-
chlorite with two to three drops of Tween-20 for 15 min 
and washed thoroughly with sterile distilled water. Inner-
most leaves were dissected out, cut into small pieces and 
cultured on Murashige and Skoog (MS) medium11 con-
taining 2 mg/l α-naphthaleneacetic acid (NAA), 3% suc-
rose and 0.8% agar for callus induction. Compact calluses 
thus obtained were transferred to MS medium supple-
mented with 0.2 mg/l NAA and 2.0 mg/l benzyladenine 
for differentiation of meristematic clusters as described 
previously12. For proliferation of shoots and complete 
plantlet development, meristematic clusters were placed 
on GA-9 vessel (Osmotek, Israel) with 50 ml of MS 
medium containing 0.5 mg/l NAA and incubated for three 
weeks. The pH of the medium was adjusted to 5.6 before 
autoclaving at 121°C for 15 min. All the cultures were 
kept at 16 h photoperiod (irradiance of 60 µmol m–2 s–1), 
temperature of 25°C, and relative humidity of 50%. There 
were five replications each with five clusters per vessel. 
 The outermost expanded leaves of the regenerated 
plants were excised randomly from each cluster, washed 
and blotted dry. They were then scanned using Hewlett 
Packard flatbed scanner series 11.0 under constant lumi-
nosity to acquire the digitized images. The images were 
saved as Adobe Photoshop (*.psd) format with a desktop 
resolution of 16 bits per pixel having 256 grey-scale 
levels. The pixel properties of the images were evaluated 
using Adobe Photoshop 7.0 software. A fixed number of 
pixels (4 × 4) were selected from the median portion of 
leaves to obtain histograms. From the luminosity and 
trichromatic components of the pixels, the mean bright-
ness, grey-scale level for the maximum pixel count and 
maximum pixel count were recorded. 
 The training set comprised 25 leaf images each having 
its origin from a regenerated plant per cluster. Leaves 
collected from five clusters in a vessel were numbered 1 
to 5. Attributes of leaf image 1 of each vessel were fed 
serially to the algorithm. Twelve attributes for each leaf 
input pattern were subjected to ART2-based classifi-
cation using vigilance parameter value of 0.59 to 0.99. A 
program based on ‘C’ language has been developed using 
ART2 algorithm to categorize the leaf images, the outcome 
of which is presented in the form of groups. 
 The component steps of the machine vision system 
along with the structural architecture of ART2 algorithm 
are presented in Figure 1. The description that follows is 
intended to summarize and provide the readers with a 
generalized outline of the ART2 network principles. F1 
layer has been divided into six sub-layers; w, x, u, v, p and 
q containing both feed-forward and feed-back connec-
tions to deal successfully with the analogue patterns in 
ART2. G is a gain control unit that sends nonspecific 

inhibitory signals to each unit on the layer it feeds. All 
sub-layers on F1, as well as the r layer of the orienting 
subsystem, have the same number of units. Individual 
sub-layers on F1 are not fully interconnected, with the 
exception of the bottom-up connections to F2 and the 
top-down connections from F2. 
 Summary of the algorithm for ART2 along with its 
exemplified numerical interpretation and constraints is as 
follows:  
a, b > 0 

0 ≤ d ≤ 1 
c * d/(1 – d) ≤ 1 
0 ≤ θ ≤ 1 
0 ≤ ρ ≤ 1 
e < < 1.  

Firstly, top-down weights are all initialized to zero 

zij (0) = 0. 

Bottom-up weights are initialized according to 
 

zji(0) ≤ 1/{(1 – d) * √ M}. 
 
Individual quantity values vary according to the sub-layer 
being considered. 
 For example, in case of cluster classification an input 
vector I is defined as 
 

I = {231.88, 235.0, 5.0, 230.88, 235.0, 3.0, 234.19,  
  237.0, 4.0, 222.25, 222.0, 3.0}. 

 
 The following equations summarize the activities of 
the six sub-layers on F1 
 

wi = Ii + a * ui, 
xi = wi/(e + ||w||), 
vi = f(xi) + b * f(qi). 

 
The contrast enhancement that takes place on F1 is deter-
mined by f(x): 
 

{ ,)( 00 θ
θ

≤≤
>= x

xxxf  
 
where θ is a positive constant less than one. 
 

ui = vi/(e + ||v||), 
pi = ui + Σ q(yj) * zij, 
qi = pi/(e + ||p||). 

 
Various constant values are chosen as a = 10; b = 10; c = 
0.1; d = 0.8; θ = 0.0001. 
 The parameter e is then typically set to a positive num-
ber considerably less than 1, 

e = 0.000001. 

The degree to which the system discriminates between 
different classes of input patterns and the granularity with 
which input patterns are classified by the network rely on 
the value of the vigilance parameter chosen. Here, for 
example, the value of vigilance parameter is set to ρ = 
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0.999. Applying input pattern I to w layer of F1, the out-
put of this layer is  

||w|| = 653.663466. 
 
This is further propagated to the v sub-layer, u sub-layer 
and p sub-layer and the output is as follows:  

||v|| = 1, ||u|| = 0.999999, ||p|| = 0.999999. 
 
The activities of the nodes on the r layer of the orienting 
subsystem is given by the following equation, 
 

ri = ui + c * pi/(e + ||u|| + ||p||). 
 
The value of the above expression is ||r|| = 0.999999. 

In the matching process the two sub-layers which take  
part are p and u. During learning, the activity of the units 
on the p layer simultaneously changes as top-down 
weights change on the p layer. The u layer remains stable 
during this process; therefore including it in the matching 
process prevents the occurrence of a reset while learning 
of a new pattern that is underway. The condition for  
reset is 
 

ρ /(e + ||r||) > 1, 
 
and the value of the expression for the given input pattern is 
 

ρ /(e + ||r||) = 0.999/(0.000001 + 0.999999) = 0.9990. 

 
Figure 1. Component steps of machine vision analysis for sorting of in vitro regenerated plants into groups. 
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Where there is no reset, the weights have been modified 
as and when resonance has been established. Output of 
the p sub layer is then propagated to the F2 layer. The net 
inputs to F2 were calculated as 

∑
=

∗=
M

li
jiij zpT ,)(  

where M is the number of units in each F1 sub-layer. 

The bottom-up weights and top-down weights were finally 
modified on the winning F2 node. 
 Luminosity and trichromatic features at RGB regions 
of 25 digitized leaf images used for training the network 
are presented in Table 1. Input patterns of 13 leaf images 
used as test set are given in Table 2. Initially, input pat-
terns of the training set were subjected to ART2 algori-
thm-based classification. The ART2 model was developed 

Table 2. Leaf image parameter of test set 
    
    

Trichromatic features 
   
   

Luminosity Red Green Blue 
            
            

Leaf  
no. 

Input 
pattern no. 

Mean 
brightness 

Grey  
level 

Pixel  
count 

Mean 
brightness 

Grey  
level 

Pixel  
count 

Mean 
brightness 

Grey  
level 

Pixel  
count 

Mean 
brightness 

Grey  
level 

Pixel  
count 

                            
1 26  94.25  94.0 3  60.94  63.0 2 128.75 132.0 3  0.00  0.0 0 
2 27 165.94 152.0 2 156.13 178.0 2 181.19 166.0 2 111.56 110.0 8 
3 28 189.69 183.4 2 176.19 171.0 2 210.44 112.0 2 115.00 115.6 2 
4 29 174.94 178.5 3 159.56 161.0 4 201.63 203.0 3  72.31  59.0 2 
5 30 197.56 187.0 3 189.00 180.0 3 231.56 226.5 2  38.94  72.5 1 
6 31 180.38 177.0 10   165.75 153.0 12   204.00 200.0 16    95.63 102.0 14   
7 32 126.00 133.0 5 119.25 123.0 3 146.69 152.0 2  51.44  60.0 3 
8 33 146.31 158.0 3 138.38 137.3 2 160.00 171.0 3  98.69 111.0 4 
9 34 144.56 150.0 2 137.13 142.0 3 157.81 160.0 2  93.19  75.0 3 

10 35 179.38 179.0 3 163.88 161.0 3 207.13 207.0 4  72.38  63.0 5 
11 36 179.44 178.2 3 171.19 171.0 6 190.44 197.0 4 141.94 141.0 3 
12 37 157.94 151.0 2 149.69 149.0 2 171.56 176.0 2 107.75 121.0 2 
13 38 149.56 168.0 3 138.94 121.4 2 169.69 182.0 3  70.00  68.0 2 
              
              

Table 1. Luminosity and trichromatic features of training set extracted from digitized leaf images 
     
     

Trichromatic features 
      

 
 

Luminosity Red Green Blue 
                        

Culture 
vessel no. 

Leaf  
no. 

Input 
pattern no. 

Mean 
brightness 

Grey 
level 

Pixel  
count 

Mean 
brightness 

Grey 
level 

Pixel  
count 

Mean 
brightness 

Grey 
level 

Pixel  
count 

Mean 
brightness 

Grey 
level 

Pixel 
count 

               
               

1  1 231.88 235.0 5.0 230.88 235.0 3.0 234.19 237.0 4.0 222.25 222.0  3.0 
2  6 220.94 222.0 3.0 220.88 219.0 4.0 223.75 219.0 3.0 207.00 208.0  3.0 
3 11 210.63 223.0 2.0 216.81 214.0 3.0 213.06 218.0 2.0 181.06 173.0  2.0 
4 16 224.75 224.0 4.0 223.19 225.0 3.0 228.94 228.0 5.0 206.88 211.0  2.0 

1 

5 21 223.44 224.0 5.0 221.38 222.0 3.0 227.81 227.0 5.0 204.19 202.0  4.0 
               

1  2 185.25 196.0 2.0 190.44 192.0 3.0 215.63 224.0 2.0  8.69  0.0  7.0 
2  7 196.75 193.0 2.0 199.94 204.0 2.0 220.00 221.0 2.0  62.00  0.0  2.0 
3 12 180.31 187.0 2.0 184.40 195.0 2.0 196.81 193.0 3.0  80.44  0.0  2.0 
4 17 193.25 207.0 2.0 195.56 212.0 2.0 222.56 233.0 2.0  29.81  0.0  8.0 

2 

5 22 170.94 173.0 3.0 173.63 181.0 2.0 201.38 203.0 3.0  0.38  0.0 14.0 
               

1  3 199.38 195.0 2.0 205.38 220.0 2.0 215.33 214.0 2.0  98.88 157.0  2.0 
2  8 177.69 173.0 2.0 180.00 190.0 2.0 199.19 188.0 3.0  55.69  59.0  2.0 
3 13 171.50 224.0 2.0 174.38 137.0 2.0 193.13 208.0 2.0  48.75  0.0  9.0 
4 18 181.19 173.0 2.0 182.19 194.0 2.0 210.50 196.0 3.0  20.94  0.0 12.0 

3 
 

5 23 171.88 168.0 2.0 176.25 174.0 2.0 200.63 197.0 2.0  5.88  0.0 11.0 
               

1  4 185.38 175.0 2.0 187.44 192.0 2.0 192.81 186.0 2.0 139.19 149.0  2.0 
2  9 192.31 193.0 4.0 190.94 198.0 2.0 210.25 211.0 3.0  99.56 122.0  1.0 
3 14 181.06 177.0 3.0 189.94 202.0 3.0 204.63 189.0 2.0  30.56  0.0  9.0 
4 19 239.31 249.0 3.0 242.38 255.0 4.0 246.88 255.0 5.0 190.50 199.0  3.0 

4 

5 24 187.38 165.0 2.0 204.50 215.0 2.0 195.31 188.0 2.0  97.00  86.0  2.0 
               

1  5 210.63 219.0 2.0 212.06 216.0 3.0 212.38 220.0 2.0 198.38 207.0  2.0 
2 10 232.88 239.0 2.0 234.06 242.0 2.0 237.75 245.0 2.0 202.31 209.0  2.0 
3 15 215.25 213.0 4.0 218.25 217.0 4.0 222.56 220.0 3.0 168.19 174.0  3.0 
4 20 230.88 234.0 2.0 234.00 226.0 4.0 234.13 237.0 3.0 204.63 207.0  3.0 

5 

5 25 214.19 222.0 2.0 215.00 209.0 3.0 219.75 227.0 2.0 182.56 182.0  2.0 
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for clustering analogue input patterns and was found to 
be most suitable in biological systems compared to other 
clustering methods such as hierarchical clustering, K-
means algorithm and self-organizing maps13. The effect 
of vigilance parameter (VP) values was evaluated with 
increasing magnitude from 0.59 to 0.99. Figure 2 shows 
the number of groups generated under various VPs. The 
number of generated groups increased from 1 to 2 with 
the range over 0.985. This may be due to the ‘mismatch 
reset’ procedure of the algorithm facilitating the genera-
tion of new group. However, there was a difference in the 
grouping pattern with VP values of 0.985 and 0.99, though 
both the values resulted in two groups. With a VP of 0.985, 
the leaves of vessel numbers 1, 2 and 5 were categorized 
into a single group (either Group A for leaves of vessels 
1 and 5 or group B for leaves of vessel 2) and the rest  
into two groups. VP of 0.99 classified the leaves of all 
vessels into two distinct groups, A and B, depicting 
efficient segregation of leaves based on image properties 
(Table 3). 
 To check the efficiency of the learning process, input 
patterns of the test set images were then classified with 
ART2 algorithm after training with a VP value of 0.99. 

All the 13 leaves were sorted into two groups, five in 
group A and the rest in group B (Table 3). The test leaf 
input pattern did not result in any variation in the group-
ing pattern. Similarity in grouping pattern between the 
training and test set data indicates the efficiency of network 
classification and its ability to recognize the invariant 
properties of domains. Furthermore, class separability is 
retained by the algorithm even with a 13-set data, indicat-
ing system validity with a small data set. 
 It appears that there exists variation among the regene-
rated plants at least in photometric behaviour. However, 
the variations reflected in altered colour spectrum of the 
leaves of regenerated plants may not parallel with ‘soma-
clonal variation’ described by Larkin and Scowcroft14. 
Leaves having maximum similarity in terms of inherent 
pixel properties fall in a particular group. Since the input 
patterns were obtained from the digitized images under 
constant luminosity and fixed number of pixels, the degree 
of error in classification is significantly minimized. Thus, 
on the basis of photometric features it is possible to group 
the regenerated plants. In plant tissue culture system, the 
use of trichromatic colours has only been restricted in the 
selection of sugarcane embryogenic callus9. The analysis 
was based on frequency distribution of brightness of the 
trichromatic colours, red, green and blue. This is a report 
on the application of adaptive resonance theory of arti-
ficial neural network (ANN) to successfully group the 
regenerated plants. Earlier, ANN has been used to moni-
tor biomass evaluation in plant cell culture15 and to esti-
mate shoot length of regenerated rice16. 
 In conclusion, the present work describes an approach 
to sort the regenerated plants of gladiolus into groups 
based on trichromatic features and analysis of data using 
adaptive resonance theory. Biological validation of group-
ing of regenerated plants, i.e. which group of plants is 
more suitable to ex vitro transfer remains to be investi-
gated. However, the approach may provide a means of 
reliable and objective measurement for selecting plants 
amenable for ex vitro survival and quality control in com-
mercial micropropagation. 

 
 
Figure 2. Effect of vigilance parameter on the number of groups gene-
rated by ART2. 

 

Table 3. Distribution and grouping of regenerated leaves of gladiolus by  
ART2 algorithm. Values represent leaf input pattern number 

  
  

Vigilance parameter 
  
  

0.999 0.985 
        

Training set 
(culture  
vessel no.) Group A Group B Group A Group B 
          
1 1, 6, 16, 21 11 1, 6, 11, 16, 21 – 
2 7 2, 12, 17, 22 – 2, 7,12, 17, 22 
3 13 3, 8, 18, 23 3 8, 13, 18, 23 
4 4, 9, 19 14, 24 4, 9, 24 19, 14 
5 5, 15, 20, 25 10 5, 10, 15, 20, 25 – 
     
Test set 26, 27, 33, 36, 37 28, 29, 30, 31, 32, 34, 35, 38 NT* NT* 
     
     
* Not tested. 
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The DMC1 gene is a major homologous recombination 
gene, expressed during prophase I of meiosis. We have 
isolated and analysed two DMC1 genes, viz. type A and 
type B from rice. It was observed that DMC1 type A is 
located on chromosome 12 whereas DMC1 type B is 
on chromosome 11. The location of DMC1 type A in 
the region on chromosome 12 that is duplicated on rice 
chromosome 11 is a new finding in this report. Earlier 
DMC1 orthologues have been reported on chromosomes 
9 and 11. Partially overlapping 5′′ and 3′′ cDNAs of one 
of the DMC1 genes were obtained and used to gene-
rate the full-length DMC1 gene, which was cloned and 
over-expressed in E. coli. 

GENETIC recombination is a fundamental process in liv-
ing cells. Studies on homologous recombination have 
potential applications in gene targeting1,2 and in the 
development of apomictic varieties in plants like rice3. A 
number of plant recombination genes have been reported 
recently4. One of these is DMC1, which was identified in 
S. cerevisiae as a meiosis-specific homologue of the E. coli 
recA gene5, required for recombination, synaptonemal 
complex formation and cell cycle progression6 and later 
shown to be present in several mammalian, fungal and 
plant species7. The protein products [Dmc1] of the yeast 
DMC1 and its human and basidiomycetes orthologues have 
been shown to possess biochemical properties similar to 
the bacterial RecA8–10. Plant DMC1 orthologues have 
been identified in Lilium longiflorum11,12, Arabidopsis tha-
liana13,14, Hordeum vulgare (GenBank Accession Number 
AF234170), Glycine max (GenBank Accession Number 
U66836) and Oryza sativa3,15,16, but so far there is no 
report on the characterization of any plant Dmc1 protein. 
 The important role of the DMC1 genes during meiosis 
was demonstrated by gene expression analysis in meiotic 
tissue using RT–PCR, Northern blot and in situ hybridi-
zation in lily, A. thaliana and rice3,12,14,17. Immunofluore-
scence localization of the DMC1 (LIM15) protein in the 
leptotene and zygotene stages of meiosis prophase I was 
observed in lily18,19. The important role of this gene 
during meiosis was confirmed with the characterization 
of the DMC1 mutant of A. thaliana20. This mutant showed 
drastically aberrant chromosome behaviour in prophase I; 
bivalent formation by pairing of homologous chromo-
somes was impaired and the ten univalent chromosomes 
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